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Abstract: This paper proposes a concurrent neural network model to mitigate non-linear distortion in power amplifiers using a basis function 
generation approach. The model is designed using polynomial expansion and comprises a feedforward neural network (FNN) and a convolu⁃
tional neural network (CNN). The proposed model takes the basic elements that form the bases as input, defined by the generalized memory 
polynomial (GMP) and dynamic deviation reduction (DDR) models. The FNN generates the basis function and its output represents the basis 
values, while the CNN generates weights for the corresponding bases. Through the concurrent training of FNN and CNN, the hidden layer co⁃
efficients are updated, and the complex multiplication of their outputs yields the trained in-phase/quadrature (I/Q) signals. The proposed 
model was trained and tested using 300 MHz and 400 MHz broadband data in an orthogonal frequency division multiplexing (OFDM) commu⁃
nication system. The results show that the model achieves an adjacent channel power ratio (ACPR) of less than –48 dB within a 100 MHz inte⁃
gral bandwidth for both the training and test datasets.
Keywords: basis function generation; digital predistortion; generalized memory polynomial; dynamic deviation reduction; neural network

Citation (Format 1): SHAO J F, HONG X, WANG W J, et al. A basis function generation based digital predistortion concurrent neural network 
model of RF power amplifier [J]. ZTE Communications, 2025, 23(1): 71–77. DOI: 10.12142/ZTECOM.202501009
Citation (Format 2): J. F. Shao, X. Hong, W. J. Wang, et al., “A basis function generation based digital predistortion concurrent neural network 
model of RF power amplifier,” ZTE Communications, vol. 23, no. 1, pp. 71–77, Mar. 2025. doi: 10.12142/ZTECOM.202501009.

1 Introduction

With the growing demand for high-throughput wire⁃
less communications, system bandwidths continue 
to expand. However the use of orthogonal fre⁃
quency division multiplexing (OFDM) modulation 

results in a high peak-to-average power ratio (PAPR) [1]. The 
nonlinear behavior of power amplifiers (PAs) often leads to 
compression of high-dynamic-range signals, causing signifi⁃
cant signal transmission distortion and upgraded error vector 
magnitude (EVM) at the receiver, even in scenarios with a 
high signal-to-noise ratio (SNR) [2]. Therefore, PA behavior 
modeling and corresponding anti-compression techniques, 
such as digital predistortion (DPD), play an important role in 
establishing a robust wireless communication system[3].

The wider bandwidth leads to the existing polynomial ex⁃
pansion models less precise for PA behavior modeling and 
digital predistortion techniques. Traditional DPD methods, 

like the generalized memory polynomial (GMP) [4] or dynamic 
deviation reduction (DDR) model[5], rely on polynomial expan⁃
sion. However, increasing bandwidth requires higher polyno⁃
mial orders, which introduces a high correlation among the 
polynomial s high-order terms, thereby making the traditional 
models sensitive to noise[6]. Additionally, conventional models 
require more delay taps and computational resources for high 
bandwidth signal transmission to radio frequence (RF) PA, 
complicating their integration with nonlinear bases[7].

Recent research and data analysis indicate that neural net⁃
works (NNs) have excellent performance in data feature extrac⁃
tion, data fitting, and model generalization. As a result, the 
use of NN in DPD has received increased attention and appli⁃
cation[8]. For example, a feed-forward NN was proposed in Ref. 
[9], achieving improvements in both linearity and stability. 
Similarly, in Refs. [10] and [11], two-stage network models 
were proposed, achieving good performance metrics such as 
adjacent channel power ratio (ACPR) and normalized mean 
square error (NMSE). In Ref. [12], a novel residual NN struc⁃
ture connects residual learning and PA nonlinearity, providing This work was supported by ZTE Industry⁃University⁃Institute Coopera⁃

tion Funds under Grant No. HC⁃CN⁃20220722010.
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better performance than conventional models.
Existing methods often achieve better performance by in⁃

creasing the number of parameters, which in turn significantly 
raises model complexity. In real-time applications, optimizing 
model complexity is a crucial aspect of the integration of RF-
DPD and NN. To reduce both the training data length and the 
number of basis functions, Ref. [13] proposed a model that 
combines an efficient uncorrelated equation selection mecha⁃
nism with orthogonal least squares. Another model proposed 
in Ref. [14] is a spare gated dynamic NN DPD model that lin⁃
earizes the PA for varying transmission configurations, 
thereby reducing model complexity.

Several new models have been introduced to address the is⁃
sues of performance and complexity that the classic NN model 
could not handle. These new models can effectively linearize 
RF PAs in broadband communications while reducing com⁃
plexity. For instance, Ref. [15] introduced a novel augmented 
convolutional NN-based DPD that can linearize concurrent 
multiband PAs. Additionally, Ref. [16] proposed a novel 
block-oriented time-delay NN to alleviate the deterioration of 
linearization performance. Ref. [17] proposed a novel RNN-
based behavioral model that reduces complexity and enhances 
linearization performance by applying the complete phase-
gated Just Another Network (JANET) unit. These new models 
are more suitable for PA-DPD in wide bandwidths and provide 
better nonlinear modeling capabilities to extract PA features 
for DPD.

In this paper, we present a DPD concurrent NN model 
based on an FNN and a convolutional neural network (CNN). 
The basic inputs of this model are obtained through polyno⁃
mial expansion of the GMP+DDR model. This concurrent NN 
model overcomes nonlinear distortions such as amplitude 
modulation to amplitude modulation (AM-AM) distortion and 
amplitude modulation to phase modulation (AM-PM) distor⁃
tion in RF-PAs. Our experimental data comprises OFDM sig⁃
nals with bandwidths of 300 MHz or 400 MHz. Our model 
aims at reducing non-linear compression to improve the ACPR 
of the output signal, with a target of at least −48 dB within a 
100 MHz integral bandwidth. In addition to its function of ba⁃
sis function generation, the proposed model seeks to have en⁃
gineering feasibility and low complexity.
2 Mathematical Model of DPD

To enhance the efficiency of PAs, existing methods aim to 
compress the power regression range as much as possible. The 
PA  s gain does not maintain linearity when the input signal 
amplitude of the amplifier output section approaches the 1 dB 
compression point. Typically, power amplifiers feature nonlin⁃
ear effects such as AM-AM, AM-PM, and time memory. Tradi⁃
tional narrowband amplifiers can be modeled using polyno⁃
mial expressions, with the Volterra series serving as one of the 
most representative mathematical models. Eq. (1) describes a 
P-order and M-length Volterra series.

y͂ (n ) = ∑
p = 0

P ∑
m

M

hp,m ∏
l = 1

p

x͂ (n - ml ) (1),

where m denotes the length of the memory effect and p de⁃
notes the maximum order of the basis. Similar to the solution 
of the Wiener filter, the concatenated signal terms in Eq. (1) 
serve as the bases of polynomial expansion, while the corre⁃
sponding coefficients hp,m are their respective weights.

While Volterra can effectively describe nonlinear compres⁃
sion with memory effects, the concatenated multiplication of 
signals introduces a great deal of computational effort and 
complexity. The memory polynomial (MP) model[17] replaces 
the concatenated multiplication of signals with a modulus-
valued term based on the Volterra series. The MP model can 
be simplified in the time domain:

y͂ (n ) = ∑
p = 0

P ∑
m

M

h2p,m x͂ (n - m )|x͂ (n - m )|2p (2).

In the MP model, the basis function becomes the signal 
multiplied by the signals ground modulus term. This modifica⁃
tion leads to a significant reduction in the computational effort 
required by the network. However, as the bandwidth increases 
further, the MP model faces the issue of lower accuracy.

The GMP model extends the composition of the bases based 
on the MP model. It can describe the nonlinear compression 
model at larger bandwidths and can be simplified in the time 
domain as:

y͂ (n ) = ∑
p = 0

P ∑
l

L ∑
m

M

h2p,l,m x͂ (n - l ) || x͂ (n - m ) 2p (3).

The GMP model extends the influence of time memory ef⁃
fects in the composition of the basis functions, which is rel⁃
evant to the scenario of wideband communication.

The DDR model[5] is also built on the MP model. However, 
it differs from the GMP model by placing more emphasis on 
the aliasing effects of wideband signals. It can be represented 
in the time domain as:

y͂ (n ) ≈ ∑
p = 0

P ∑
k

K

a2p,i,m || x (n ) 2p
x (n - k ) +

∑
p = 0

P ∑
l

L

b2p - 2,j,n || x (n ) 2p - 2
x2 (n - l ) x (n - l )                         (4).

The DDR model can be divided into two parts. As shown in 
Eq. (4), the first part is the MP model, while the second part 
describes the nonlinear compression of the signal after alias⁃
ing under the memory effect.

In this paper, since the data we use are wideband signals 
and the main requirement for the proposed model is better per⁃
formance, we use the GMP+DDR model as the reference math⁃
ematical model for this paper. It can be written as:
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y͂ (n ) ≈ ∑
p = 0

P ∑
i = 0

I ∑
k

K

a2p,i,m || x (n - i )
2p

x (n - k ) +

∑
p = 0

P ∑
j = 1

J ∑
l

L

b2p - 2,j,n || x (n - j )
2p - 2

x2 (n - l ) x (n - l )            (5).

Eq. (5) combines the features of the GMP and DDR models. 
Both the memory effect and aliasing of broadband signals are 
covered to ensure that the model can achieve optimal perfor⁃
mance. The dataset composition will also refer to the math⁃
ematical model shown in Eq. (5).
3 Designing of DPD NN Model

3.1 Basis Function Generation and Recognition
To explain the generation of basis functions, we first clarify 

the input dataset structure. Our basis function formulation, 
based on the GMP+DDR model for wideband applications, 
draws inspiration from the methodologies presented in Refs. 
[4] and [5]. The intermodulation terms in Eq. (5) are highly 
suitable for modeling the wideband PA. Therefore, we estab⁃
lish the dataset format based on the fundamental components 
in Eq. (6).
x͂ (n ) = [ Re ( x (n - 12) ) ,⋯, Re ( x (n) ) ,⋯, Re ( x (n + 11) ) , 
Im ( x (n - 12) ) ,⋯, Im ( x (n) ) ,⋯, Re ( x2(n) ) ,⋯, Im ( x2(n) ) ,⋯, 
| x (n) |2,⋯, | x (n) |4,⋯, | x (n) |6,⋯]T,
X = [⋯x͂ (n - 1), x͂ (n ), x͂ (n + 1),⋯]                                            (6).
The dataset consists of multiple vectors, as shown in Eq. 

(6), indicating the input terms and memory depth. The input 
elements include the signal, the square of the signal, and the 
even-square term of the signal  s modulus. And they all stem 
from the GMP+DDR model, as detailed in 
Eq. (5). The model has an order of 7 and a 
memory depth of 24, spanning from −12 to 
11. Since the neural network library we 
use (PyTorch) is less compatible with com⁃
plex numbers, the proposed model is 
trained using real-valued data. For this 
purpose, the real and imaginary parts of 
the signal are split and used to construct 
the dataset.

To linearize the bases of individual non⁃
linear terms, we propose the use of fully 
connected (FC) layers to combine all ele⁃
ments. This approach enables the number 
of basis elements to be established by the 
number of neurons within the FC layer. 
The output of each layer is then nonlin⁃
early activated to generate a nonlinear ba⁃
sis. Additionally, based on the survey re⁃

sults, at least three FC layers are sufficient to produce the ma⁃
jority of nonlinear combinations. Then the outputs would be ac⁃
tivated by the nonlinear function to ensure their nonlinearity.

In this paper, the basis generation network (BGN) based on 
an FNN is illustrated in Fig. 1. The weight matrix within the 
FC layer adjusts the coefficients of the input terms, which are 
optimized through training feedback. As shown in Fig. 1, the 
length of the FC layers decreases in the forward direction of 
the arrays. Therefore, the number of neurons and the output of 
each FC layer are decreased. It is similar to FNN selecting 
bases for each hidden layer. Regarding the activation func⁃
tion, Rectified Linear Unit (ReLU) leads to faster loss conver⁃
gence compared to other activation functions based on test re⁃
sults. This improvement can be attributed to ReLUs superior 
sparsity. Consequently, each FC layer  s output in the basis 
function generation model is activated by ReLU. Bi/q−1 and 
Bi/q−N in Fig. 1 denote the real or imaginary parts of the first 
and N-th substrates generated, respectively. Since the DPD 
model is a real-valued training NN model, the BGN has two 
identical structures as shown in Fig. 1. The notation “i/q” rep⁃
resents in-phase or quadrature components, while “ − 1” or 

“−N” serves as a label for the bases. These labels have no real 
physical meaning and are solely used to distinguish the bases 
and correspond to the weights.
3.2 Structure of Concurrent NN Model

Fig. 2 depicts the proposed concurrent neural network 
model, comprising an FNN and a CNN.

The left side of Fig. 2 displays the FNN model utilized to 
generate basis functions, as described in Section 3.1. Since 
the proposed model is trained using real numbers, the FNN-
based function generation model has two sets of three FC lay⁃
ers. The basis generation function only relies on the coeffi⁃
cients of each hidden layer in the FNN model. On the right 

ReLU: Rectified Linear Unit
Figure 1. Proposed basis generation function
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side of Fig. 2, the weights generation network (WGN) based on 
a CNN is illustrated. It contains three fully connected layers 
and two convolutional layers, as shown in Fig. 2. To ensure 
that the weights generation does not change by the input, the 
input to the WGN is fixed at a constant value (set to 1 in the 
following training). The input to the CNN model is derived 
from the output of the two FC layers positioned above it. 
Therefore, the input of the WGN has no real physical mean⁃
ing. WGN aims to help us find a proper weight through a train⁃
ing process as the loss decreases. Similar to the bases, we as⁃
sume that when the loss converges to a very low level, the 
weights will be optimized to best describe the nonlinear com⁃
pression features in the trained data. Subsequently, the out⁃
puts of the FNN and CNN are trained through the projection 
layer at the bottom of Fig. 2 to generate the in-phase/quadra⁃
ture (I/Q) data. The projection layer is tailored to perform com⁃
plex multiplication accurately by incorporating appropriate di⁃
mensional changes, aligning the I/Q data, and producing the 
final output. The mean squared error (MSE) of the models out⁃
put is computed using the validation set (valset) as the model 
loss. This calculated model loss is then utilized as feedback to 
fine-tune the coefficients in all hidden layers of the proposed 
model. Furthermore, the weights generated by the CNN model 
are insensitive to the data fed into the model. Therefore, if the 
model is executed on a hardware platform such as a Field-
Programmable Gate Array (FPGA), only the FNN network 
needs to be deployed. The trained FNN network carries out 
only linear operations and is easily implemented in engineer⁃

ing applications.
In essence, the proposed FNN-CNN con⁃

current model achieves DPD through time-
domain fitting. The FNN model generates 
the basis functions based on the GMP+
DDR model via model training, while the 
CNN model produces the weights using the 
coefficients from each hidden layer. Both 
models are jointly optimized to minimize 
the loss. The final output is obtained by 
multiplying the basis functions with the 
weights, after which the valset is used to 
compute the loss. A model with such a 
structure, concurrently trained by CNN 
and FNN, is dubbed a concurrent neural 
network model.
4 Training Process and Results

4.1 Dataset Use Cases
Two datasets from different RFs are 

available in the OFDM communication 
system, with bandwidths of 300 MHz and 
400 MHz. Each dataset has 10×16 384 
samples. We use eight of ten feedback sig⁃
nals as training sets (trainset), the other 

two of them as test sets (testset), and the corresponding trans⁃
mission signal fed into the PA as the validation set.

Fig. 3 illustrates the nonlinear compression of the datasets 
containing both 300 MHz and 400 MHz bandwidths. The PA 
significantly compresses the signal amplitude. As shown in 
Table 1, the compressed signal produces severe out-of-band 
leakage and nonlinear distortion. Table 1 presents the 
frequency-domain performance of the datasets, and the ACPR 
is calculated at integral bandwidths of 100 MHz and 20 MHz. 
The primary goal of this paper is to minimize the ACPR 
(with a target of at least −48 dB) of the output generated by 
the proposed model by employing optimization and training 
techniques.

The proposed model, as outlined in Section 3, aims to elimi⁃
nate the out-of-band nonlinear distortion through time-domain 
fitting of the trainset to the valset. Moreover, we evaluate the 
models effectiveness through the ACPR at an integrated band⁃
width of 100 MHz.
4.2 Training Results

The datasets shown in Section 4.1 are utilized to train the 
proposed model with the MSE serving as the loss function. 
Eight out of ten training sets are selected randomly for the 
training process, and the remaining two datasets are used as 
testsets to evaluate the trained models performance.

Fig. 4 depicts the evolution of the model outputs MSE over 
20 000 training epochs. The blue curve represents the 

I/Q: in-phase/quadrature                    ReLU: Rectified Linear Unit
Figure 2. Proposed parallel concurrent neural network for digital predistortion
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300 MHz dataset, whose MSE drops sharply within the first 
5 000 epochs, reaching a plateau thereafter and converging 
below 2×10-5 around 12 500 epochs. The final loss of the 
300 MHz dataset after 20 000 epochs is 1.4×10-5. The orange 

curve, representing the 400 MHz dataset, exhibits a similar 
downward trajectory, albeit with a poorer result than the blue 
curve. Its final loss after 20 000 epochs is 1.97×10-5. Notably, 
the increase in bandwidth from 300 MHz to 400 MHz does not 
interfere with the convergence speed. The final convergence 
value is affected not only by model training but also by the dif⁃
ferences in the datasets. Fig. 4 provides evidence that the pro⁃
posed model performs well across various bandwidths, thereby 
highlighting its generalizability.

Fig. 5 shows the DPD results of the proposed model and a 
comparison with the existing Generalized Memory Polynomial 
(GMP) algorithm. Specifically, the out-of-band power of the 
proposed model (the blue curve in the figure) is approximately 
40 dB lower than that of the feedback signal (the red curve) in 
Figs. 5a and 5b. In addition, the signal portion of the model 
output closely matches the signal component of the source sig⁃
nal (the cyan curve) for both 300 MHz and 400 MHz cases. 
This outcome indicates the remarkable ability of the proposed 
model to suppress out-of-band nonlinear distortion without 
compromising the fitting of the signal portion. When compared 
with the existing algorithms, the proposed model has obvious 
advantages in suppressing out-of-band leakage. There is 
nearly 20 dB optimization compared to the GMP model (the 

Table 1. Frequency domain performance of datasets

Datasets
300 MHz valset

300 MHz datasets

400 MHz valset

400 MHz datasets

ACPR of Left Band/dB
100 MHz Integral Bandwidth

−54.17
Max=−21.45
Min=−21.49

Average=−21.47
−54.90

Max=−21.36
Min=−21.40

Average=−21.38

20 MHz Integral Bandwidth
−46.18

Max=−21.00 
Min=−21.02

Average=−21.00
−43.29

Max=−19.39 
Min=−19.48

Average=−9.45

ACPR of Right Band/dB
100 MHz Integral Bandwidth

−58.04
Max=−21.94
Min=−21.98

Average=−21.96
−53.61

Max=−22.61
Min=−22.88

Average=−22.66

20 MHz Integral Bandwidth
−48.65

Max=−21.01
Min=−21.01

Average=−21.01
−46.86

Max=−20.13
Min=−20.22

Average=−20.19

NMSE

Max=−16.40
Min=−16.41

Average=−16.40

Max=−17.02
Min=−17.05

Average=−17.04
ACPR: adjacent channel power ratio        NMSE: normalized mean square error

(a) 300 MHz dataset

(b) 400 MHz dataset

Figure 3. Demonstration of training and validation sets
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Figure 4. Model training loss
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green curve). However, the training results for the 300 MHz 
and 400 MHz datasets in Fig. 5 still exhibit some out-of-band 
non-linear distortion, approximately 20 dB higher than the out-
of-band part of the validation sets.

Table 2 presents the training and testing results of the pro⁃
posed model for both the 300 MHz and 400 MHz datasets. 
The ACPR of both the left and right frequency bands can ex⁃
ceed − 48 dB for an integral bandwidth of 100 MHz. Addi⁃
tionally, the model output  s NMSE indicates an improve⁃
ment of nearly −30 dB compared to the initial NMSE of the 
trainsets, demonstrating that the model output fits the signal 
portion well. The ACPR of the testsets is also greater than 
− 48 dB; however, it is approximately 1 dB worse than the 
ACPR of the training sets, and the NMSE training results 
show similar results.

In addition to evaluating the ACPR of the 100 MHz integral 
bandwidth, this study also calculates the ACPR of the 20 MHz 
integral bandwidth to identify why the ACPR produces subopti⁃
mal outcomes. By comparing Table 2 with Table 1, it is observ⁃
able that the performance difference between the model output 
and the trainsets or testsets remains the same for both 100 MHz 
and 20 MHz integral bandwidths. Consequently, the expansion 
of 80 MHz to the periphery does not affect the ACPR results. 
Instead, the primary factors affecting the ACPR assessment are 
concentrated within the 20 MHz band boundary.
5 Conclusions

This paper presents a concurrent NN model of RF PA de⁃
signed to accomplish DPD functions. The proposed model 
employs the enhanced DDR (GMP+DDR) model as input, 
which is more suited for modeling the behavior of broadband 
communication systems. The FNN generates the basis func⁃
tions, while the CNN generates the weights, with the entire 
model trained to simultaneously generate their respective op⁃
timized values. This study employed eight sets of 300 MHz 
and 400 MHz data for 20 000 epochs and tested the model 
with two sets of data. After training and testing, the desired 
goal of achieving a −48 dB ACPR by 100 MHz integral band⁃
width was met for both the trainsets and testsets. The spectro⁃
gram shows that the proposed model has a great advantage 
over the existing algorithms in wider bandwidth scenarios. 
Moreover, the ACPR was evaluated at 20 MHz integral band⁃
width, revealing that the roll-off is the primary limitation of 

Table 2. Frequency domain performance of model output

Datasets

300 MHz trainsets

300 MHz testsets

400 MHz trainsets

400 MHz testsets

ACPR of Left Band/dB
100 MHz Integral Bandwidth

Max=−50.27
Min=−50.77 

Average=−50.48
−49.65, −49.48

Max=−48.93
Min=−49.36 

Average=−49.17
−48.02, −48.17

20 MHz Integral Bandwidth
Max=−42.53 
Min=−43.15 

Average=−42.94
−42.77, −42.57
Max=−40.99 
Min=−41.49 

Average=−41.24
−40.50, −40.64

ACPR of Right Band/dB
100 MHz Integral 

Bandwidth
Max=−51.29
Min=−51.99

Average=−51.70
−50.71, −50.69

Max=−48.66
Min=−49.10

Average=−48.82
−48.13, −48.12

20 MHz Integral 
Bandwidth

Max=−44.25
Min=−45.14

Average=−44.73
−44.35, −44.25

Max=−42.45
Min=−43.40

Average=−43.10
−42.44, −42.54

NMSE

Max=−43.62
Min=−46.12

Average=−46.69
−44.77, −44.79

Max=−43.86
Min=−44.31

Average=−44.15
−42.92, −42.85

ACPR: adjacent channel power ratio        NMSE: normalized mean square error

(a) 300 MHz spectrogram

(b) 400 MHz spectrogram

Figure 5. Digital predistortion results of the proposed model
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ACPR. This finding can guide future efforts to optimize the 
proposed model.
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