
ZTE COMMUNICATIONS
June 2024 Vol. 22 No. 2

GAO Jun, HAN Yinjun, LIN Yang, MIAO Hao, XU Mo

Learned Distributed Query Optimizer: Architecture and Challenges Review

Learned Distributed Query OptimizerLearned Distributed Query Optimizer::
Architecture and ChallengesArchitecture and Challenges

GAO Jun1, HAN Yinjun2, LIN Yang2, MIAO Hao1, XU Mo2

(1. Peking University, Beijing 100871, China；
 2. ZTE Corporation, Shenzhen 518057, China)

DOI: 10.12142/ZTECOM.202402007

https://kns.cnki.net/kcms/detail/34.1294.TN.20240521.1932.002.html,
published online May 23, 2024

Manuscript received: 2023-07-28

Abstract: The query processing in distributed database management systems (DBMS) faces more challenges, such as more operators, and
more factors in cost models and meta-data, than that in a single-node DMBS, in which query optimization is already an NP-hard problem.
Learned query optimizers (mainly in the single-node DBMS) receive attention due to its capability to capture data distributions and flexible
ways to avoid hard-craft rules in refinement and adaptation to new hardware. In this paper, we focus on extensions of learned query optimizers
to distributed DBMSs. Specifically, we propose one possible but general architecture of the learned query optimizer in the distributed context
and highlight differences from the learned optimizer in the single-node ones. In addition, we discuss the challenges and possible solutions.
Keywords: distributed query processing; query optimization; learned query optimizer

Citation (Format 1): GAO J, HAN Y J, LIN Y, et al. Learned distributed query optimizer: architecture and challenges [J]. ZTE Communica⁃
tions, 2024, 22(2): 49–54. DOI: 10.12142/ZTECOM.202402007
Citation (Format 2): J. Gao, Y. J. Han, Y. Lin, et al., “Learned distributed query optimizer: architecture and challenges,” ZTE Communica⁃
tions, vol. 22, no. 2, pp. 49–54, Jun. 2024. doi: 10.12142/ZTECOM.202402007.

1 Introduction
Distributed database management systems (DBMSs) serve

as a key infrastructure to manage data when the storage and
processing of data exceed the capability limitation of a single-
node computer’s node. The data are usually partitioned into
different computer nodes according to different strategies,
such as hash, range, and round-robin, and then the query is
processed over the partitioned data transparently. Different
kinds of distributed DBMS have emerged recently, including
the distributed version of traditional databases[1–2] and new
products in the distributed context[3–4]. In this paper, we as⁃
sume that the distributed DBMS runs on homogenous hard⁃
ware and software, which is more like parallel databases. We
ignore the differences between the two terms in this paper.

Query processing is essential to the distributed DBMS. As
in a single-node DBMS, the query processing in distributed
DBMS hides its implementation details. When the end users
submit a query, a distributed DBMS makes an evaluation
plan according to its meta-data and statistics maintained, re⁃
trieves data from the different partitions, and shuffles data
when needed. End users only need to express their query
needs without considering the data placement or the de⁃
tailed evaluation plans.

We can see that distributed query processing faces more
challenges than its single-node version. First, the data are or⁃
ganized as partitions across the different computing nodes. Dif⁃
ferent partition strategies will impact the following query per⁃
formances, and thus some kinds of statistics should be main⁃
tained to guide the query optimization at the granularity of par⁃
titions. Second, more operators are introduced in the distrib⁃
uted DMBS, including the operators to move the data across
nodes, distributed versions for traditional operators, etc. These
operators offer much larger space for optimization. Third, the
cost model in the single-node DBMS should be substantially
extended to consider other factors in the distributed context,
like the communication cost and the computation skew. In
fact, the evaluation cost in distributed DBMSs is largely deter⁃
mined by the slowest computer node[4].

The search space in the query optimization of the distrib⁃
uted DBMS includes the join order search, the physical opera⁃
tor selection, the movement of data, and the placement of op⁃
erators on the computer nodes. The first two aspects, which
are also present in a single-node DBMS query optimization,
are recognized as NP-hard problems[5]. The latter two are re⁃
lated to the multiple computer nodes in distributed DBMSs.
The data stored in the partitions have movement strategies dif⁃
ferent from other computer nodes, each of which is for various
communication and computation costs[6]. Additionally, the
placement of operators on computation nodes should be con⁃
sidered, as some pushing-down operators can reduce the inter⁃

This work was partially supported by NSFC under Grant Nos. 61832001 and
62272008, and ZTE Industry-University-Institute Fund Project .

49

ZTE COMMUNICATIONS
June 2024 Vol. 22 No. 2

GAO Jun, HAN Yinjun, LIN Yang, MIAO Hao, XU Mo

Review Learned Distributed Query Optimizer: Architecture and Challenges

mediate results.
One simple but usually effective method in query optimiza⁃

tion of the distributed DMBS is the heuristic rule. That is, the
plan is generated as in the single-node DMBS in the first
phase. Then in the second phase, the distributed DMBS
chooses the distributed version for the physical operators in
their evaluation plan, in which the data are first shuffled to
other nodes, the computation is performed in nodes, and the fi⁃
nal results are collected from nodes. The heuristic optimizer
can lower the cost in the optimization phase and always ex⁃
ploit the power of different computer nodes, which results in a
competitive performance.

However, the heuristic optimizer is too rough for distributed
query processing. Ref. [7] points out that the plan should be
constructed as a whole, while the partitions are totally ignored
in the heuristic plan generation. In addition, all physical op⁃
erators involve the data movement in the first phase, whose
communication cost may be reduced if one data movement can
be shared by multiple operators. Moreover, the cost model
should be extended to consider the communication and com⁃
putation skewness. Finally, it is hard for these heuristic rules
to adapt to new hardware in distributed DBMSs.

Learned query plan generation[8–14] has been studied and
shows its advantages in the single-node DBMS. Most learned
optimizers[9–13] view plan generation as a sequence of action
decisions. They introduce encoders to represent a query ex⁃
pression, capture data statistics, and then rely on a reinforce⁃
ment learning (RL) framework to learn the action policy or the
value of states, which can be trained with the evaluation la⁃
tency or cost of the generated query evaluation plan.

We also notice that generative models like GPT have achieved
remarkable success in various tasks, which also brings important
inspiration to the learned query plan generation. However, we
cannot directly apply the GPT models, at least the current ver⁃
sion, to generate the query plan. As a language model, GPT can⁃
not yield the tree-structured plan directly. In addition, GPT lacks
statistics data and meta data in distributed DBMSs, which is
highly needed in efficient plan generation.

This paper mainly focuses on how to extend the learned op⁃
timizer in single-node DBMSs to distributed DBMSs. We first
propose a possible but general architecture, then discuss chal⁃
lenges as well as possible solutions. We notice that there exist
surveys[15–19] for the combination of AI and databases, ranging
from learned index, learned data layout, database tuning, and
plan generation, and there are some works[20–22] accelerating
the query processing using new hardware in distributed
DBMSs. Different from existing works, this paper focuses on
the learned plan generation in the distributed context.
2 Architecture of Learned Distributed

Query Optimizer
In this section, we first show the overall architecture of a

learned query optimizer in the distributed DBMS, and then de⁃
tail each component especially in aspects of distributed exten⁃
sions compared with those in the single-node DBMS.
2.1 Overview

Our proposed architecture is similar to the ones presented
in works like ROTS[9], LOGER[13], etc. As shown in Fig. 1, the

▲Figure 1. Architecture of a learned query optimizer in distributed DBMS

DBMS: database management system

Relation partitions Computing nodes
Distributed DBMS

Plan
State-action queue

Cost-aware sub-plans Order-aware sub-plansPartition-aware sub-plans
(7) Cached states in beam search

Subplan
(4) Subplan enumeration

Partition-aware computa⁃tion push-down Computation push-down

Enumeration of join order Enumeration of physical operators Enumeration of the access path

(Action space)
(3) Operators

(1) Context representation

Query (2) Query repre⁃sentation

Absolute/relative cost model

(6) Cost model

(5) Staterepresentation

Subplans

Partition aware statistics

Resource representation

Data shuffling Data merge Broadcast join Rehash join Partition bloom filter Data-induced predicate Physical operators in single-node DBMS

50

ZTE COMMUNICATIONS
June 2024 Vol. 22 No. 2

GAO Jun, HAN Yinjun, LIN Yang, MIAO Hao, XU Mo

Learned Distributed Query Optimizer: Architecture and Challenges Review

boxes with grey color indicate the related techniques that have
been discussed in the single-node DBMS. It follows the RL
framework to generate the final plan evaluation tree. The ar⁃
chitecture fits the value-based RL models, and most of the
components can be reused in the policy-based RL models.
The states, actions, and rewards can be described as follows.

• The states are the intermediate forest of the sub-plan
trees in plan generation. The initial state contains all table
nodes, each for one sub-plan tree. The table embeddings come
from (2) component. The table nodes also capture the data sta⁃
tistics modeled by (1) component. The state transition indi⁃
cates that two sub-plan trees are merged. When the generation
terminates, an entire evaluation tree is constructed. Due to the
different order of tables in join operations and different place⁃
ment of operators, the space of states is huge. Each state is en⁃
coded into a state representation in (5) and is further fed into
the value model in (6) to measure which states have the poten⁃
tial to achieve high-performance results.

• The actions in RL indicate choosing two sub-plan trees
and selecting one operator node to merge two sub-plan trees
in each step to plan generation. The internal nodes in the
evaluation tree are operators in relational algebra. Besides
physical operators in the single-node DMBS, the distributed
DBMS introduces operators to optimize the communication
cost, skip data partitions, and operate among partitions in
(3). As the action space is huge, the value-based RL can take
the heuristic plan enumeration rules in (4) into consider⁃
ation, which only produces the potential promising states for
evaluation. The plan search can take a beam search strategy
to keep more candidates in the plan enumeration in (7), even
though the candidates are not with the minimal estimated
cost at that time[12–13]. Such a strategy is in the same line
with dynamic programming in SystemR, a well-known classic
query optimizer.

• The rewards come from the feedback of distributed
DBMS. As Structured Query Language (SQL) hints can specify
the join order and physical operator, the final generated plan
can be expressed using SQL hint first and then is submitted to
the distributed DBMS for evaluation. The latency of the query
plan can be collected as the rewards in the training of the
value model. The rewards can take the form of the absolute
query latency or the relative speedup compared with the la⁃
tency of the plan using the default optimizer from the database.
2.2 Context Representation

The context representation component enables the query
representation to be aware of the computing resource in differ⁃
ent nodes and data distribution. The computing resource mod⁃
eling and the statistics among the partitions are rarely studied
in the single-node DBMS.

It is necessary to model computing resources as the slowest
computing nodes that dominate the entire cost in distributed
computing. The computing nodes in the distributed DBMS are

interconnected by the network. Thus, the computing resource
can be modeled as a graph, where each computing node has
various computing and storage features, and the link is for the
communication between nodes. The computing resource may
be modeled with a graph neural network (GNN), in which the
embedding of the computing nodes is generated.

For the modeling of intra-partition statistics, it can leverage
the advanced techniques for the extensively studied cardinal⁃
ity estimation[23–28] in the single-node DBMS, which is roughly
categorized into the data-driven[23–25] and query-driven[26–28]
with different training signals. Note that, besides the machine
learning based statistics, distributed DBMSs can build histo⁃
grams or bloom filters in partitions, and these exact statistics
enable distributed DBMSs to develop new operators, like data-
induced predicates[29], to skip partitions in query evaluation.
For the modeling of inter-partition statistics, the intra-
partition data distribution representation can be attached to
the computing nodes as one kind of feature and then the com⁃
puting resource graph can learn the data distributions among
the computing nodes.
2.3 Query Representation

The query representation component converts a query expres⁃
sion into a representation. Roughly, we have two methods to
generate the query representation, namely based on the logical
query graph and based on the plan from the database. Such a
component is necessary to the distributed query optimizer, but
shows a few differences with that in the single-node DBMS.

The logical query graph-based method is to build the query
representation from a logical query graph, which is con⁃
structed from query expression. A logical query graph can con⁃
tain table nodes with predicates as their features and edges
with the join predicates, or takes the form of a heterogonous
graph with table nodes, column nodes, predict nodes, etc.,
which is adopted by the Real Time Operating System (RTOS),
LOGER. Then, a GNN is employed to learn the table embed⁃
dings, which will be fed into the following query generation
components.

The plan-based method takes the plan generated by the de⁃
fault optimizer in the DBMS[30, 40]. QueryFormer[30] is a repre⁃
sentative work that uses a transformer to model the plan. As
the plan tree is deep, a virtual node is introduced to enable
fast information exchanges among nodes in the plan. The plan
from the database contains rich and easily-exploited features.
However, the plan takes the tree form, and two tables that can
be joined directly may be far in the tree, which may lead to
some kinds of information loss compared with the logical
query graph.
2.4 Physical Operators (Action Space)

The actions in RL indicate selecting one operator as an in⁃
ternal node and extending one or two sub-plan trees. The ac⁃
tion space is related to the number of the physical nodes and

51

ZTE COMMUNICATIONS
June 2024 Vol. 22 No. 2

GAO Jun, HAN Yinjun, LIN Yang, MIAO Hao, XU Mo

Review Learned Distributed Query Optimizer: Architecture and Challenges

the join orders. Obviously, the more operators in the distrib⁃
uted DBMS, the larger the search space. Here, we mainly list
some of the operators introduced for the distributed DBMS, in⁃
cluding the communication-related operators, the join opera⁃
tors, and partition-specific operators.

The communication-related operator can be one class of op⁃
erators. Recall that the distributed version for physical opera⁃
tors includes the data movement first and then computation
next. We can extract the communication operators as the first-
class operators, which enables more flexibility in the plan con⁃
struction. For example, Ref. [31] devises a method to ex⁃
change the order of communication and computation. In addi⁃
tion, the data merger operator can move the data from one par⁃
tition to another, which can then reduce the communication
cost in the following join operations. In other words, opposite
to the data partition, a data merge operator lowers the commu⁃
nication overhead at the cost of the computation skew.

The join operators can be divided into the intra-partition and
inter-partition operators. The intra-partition join operators can
take a similar way as those in the single-node DBMS, like by
hash-based and nested loop, and merge join according to the
size and statistics distribution of input data. The inter-partition
join is also extensively studied in Ref. [32], including the hash
join to handle the equal join predicates, fragment-and-replicate
join[33] for general join predicates, and asymmetric fragment-
and-replicate join when two join tables are skewed.

The partition-specific operators work on partitions. The par⁃
titions are units in the data storage, and the query perfor⁃
mance can be improved if the partitions are skipped. The par⁃
tition bloom filter is one operator which can quickly check
whether the partition contains the data meeting the query con⁃
ditions or not. Another operator is the data-induced predicate
operator[29], which can derive new predicates on partitions
from the query and partition-related statistics.
2.5 Plan Enumeration

The action space in the distributed DBMS is huge. We can
then introduce the heuristic rules in the plan enumeration,
which only produces the promising candidates and then im⁃
proves the stability of the reinforcement learning. Note that
the heuristic rules are easy to incorporate in the value-based
RL, which is taken by most of the learned optimizers. The fol⁃
lowing heuristic strategies recently studied in the literature
can be considered in the learned optimizer.

The placement of the data movement operation is consid⁃
ered in Ref. [31]. As mentioned above, the data movement (or
shuffling) becomes an independent operator and can be com⁃
mutative with other operators in the plan. For example, with
the consideration of the existing partition scheme, the data
movement can be placed earlier, which can then reduce the
large intermediate results.

Computation push-down[34] is also considered in the plan
generation. That is, instead of collecting data from partitions

and then performing operations like aggregating/distinction
over the collected data, we can perform operators first at the
granularity of partitions, and then transfer the results to the
next phase. The predicates evaluated early at the granularity
of partitions can reduce the intermediate results, which usu⁃
ally reduces the communication cost in the following.
2.6 State Representation

The state representation component captures different fea⁃
tures of a constructed sub-plan forest and converts it into an
embedding state that will feed into the following value model
to help choose the candidate actions. This component shares
similar functionalities with that of a single-node DBMS, but
also displays several differences.

The first difference is the form of the evaluation plan. The
plan in the single-node DBMS always takes the form of a left-
deep tree, which can allow index-loop join and support the
pipeline evaluation. However, neither the index-loop join nor
the pipeline is the key improvement in the distributed DMBS.
In other words, there are more bushy structure plans in the dis⁃
tributed DBMS. Such a change may impact the design of the
underlying representation model. For example, Query⁃
Former[30] introduces a virtual node to handle the deep tree,
while this issue is not serious in the bushy form.

The second difference is the heterogeneous nature of opera⁃
tors. As we mentioned before, distributed DBMSs support
more operators than single-node DBMSs, while different opera⁃
tors are with different features, like input/output (IO), CPU,
and communication cost. Most of the plan representation mod⁃
els, like Tree-CNN[35], Tree-LSTM[36], and Transformer[37],
handle the nodes with the shared features space, which should
be extended to capture the heterogeneous nature of operators.
2.7 Value Model

The value model plays a crucial role in the value-based RL
and has a similar functionality to the critic model in the policy-
based RL, which can be used to determine which states can re⁃
sult in a better performance. For example, Oceanbase[38] points
out that in some cases the computation push-down is not benefi⁃
cial, which can be detected with the aid of the value model. The
value model on the final plan is actually the cost model for the
query evaluation plan. Although the cost model is more com⁃
plex, the learned value model in the distributed DBMS is simi⁃
lar to the corresponding one in the single-node DBMS.

The cost model in distributed DBMS should consider more
factors, including the IO cost, CPU cost, communication cost,
and the data skew. Fortunately, the cost model[39] in the
learned optimizer need not explicitly express the weights of
different factors. The value model will be trained with the sig⁃
nals like the query latency. With more data trained, the
weights of different factors can be learned in the cost model
automatically.

One possible extension of the cost model is the choice of

52

ZTE COMMUNICATIONS
June 2024 Vol. 22 No. 2

GAO Jun, HAN Yinjun, LIN Yang, MIAO Hao, XU Mo

Learned Distributed Query Optimizer: Architecture and Challenges Review

the absolute or relative cost model. The absolute value model
tries to mimic the latency for one query, and the relative cost
model compares the values of two candidate plans. As a plan
contains multiple nodes, and the relative cost model can cap⁃
ture the differences between two plans more easily, we guess
that the relative cost model might be more suitable in the dis⁃
tributed DBMS.
2.8 Cached Sub-Plans in Plan Search

The cached plans are the candidates which need to be ex⁃
plored during the plan search. To cache one plan with the po⁃
tential minimal cost is similar to the greedy search, which
can be implemented efficiently at the cost of sub-optimal re⁃
sults. Thus, it needs to cache more candidates to gain perfor⁃
mance improvement. The existing learned optimizers, like
BALSA and LOGER, incorporate more cached sub-plans in
beam search.

The progress in the distributed DBMS shows the different
criteria in selecting sub-plans to cache. Besides the sub-plans
with the minimal cost or preserving tuple orders, some distrib⁃
uted DBMSs, like Oceanbase[3], cache the sub-plans with inter⁃
esting partitioning, which may avoid data partitioning in the
following operators.

These plan caching strategies can be combined into the
learned query optimizer easily using the beam search. The
value model can help choose the sub-plan with the possible
minimal cost. In addition, we can apply similar heuristic rules
in distributed DBMSs to select the sub-plans with orders on
specific attributes which could be useful for later operations.
These plans are cached for future exploration using the beam
search in learned query optimizers.
3 Challenges of Learned Distributed Query

Optimizer
We identify two key challenges associated with the learned

distributed query optimizer and discuss potential solutions to
these issues.
3.1 Instability of Learned Query Optimizer

The learned query optimizer has a high chance to produce
the plans with performance improvement when queries in the
test set share the similarity with those in the training set. How⁃
ever, when the test query differs, the learned query optimizer
may produce sub-optimal or bad plans. The stability of the
learned query optimizer should be substantially enhanced be⁃
fore it can be deployed in real-life applications.

There are two possible solutions to the issue. BAO[10] mainly
generates the candidate plans using existing DBMS optimizers
with learned global parameters, and the bad performance is
avoided with the help of the existing DBMSs. In fact, BAO has
been extended to distributed DBMS[11]. However, such a
method cannot produce plans from scratch and also is re⁃
stricted by the capability of DBMSs.

An alternative solution is to extend the learned optimizer to
produce both the candidate plan and its confidence in produc⁃
ing such a plan. When the confidence is lower than a given
threshold, it directly relies on the DBMS to produce the final
plan. In this way, plans with poor performance can be avoided.
3.2 High Training Cost of Learned Query Optimizer

The training of a learned query optimizer needs to search
candidate plans from a huge plan space, in which each candi⁃
date is evaluated against the DBMS to obtain its latency. In ad⁃
dition, RL is notoriously hard to converge. In all, the training
of a learning query optimizer is expensive.

Besides the transfer learning and meta-learning RL to im⁃
prove the sample efficiency, an evolutionary algorithm (EA)
could be one possible solution. In fact, EA methods have been
adopted by PostgreSQL and can produce high-quality plans
when the number of tables exceeds a given threshold. The ex⁃
isting research study, like learned concurrency control, also
shows that EA algorithms could produce more effective results
with less training cost than reinforcement learning[41].
4 Conclusions

The advance of distributed DBMS is required to incorporate
the promising learned query optimizer. This paper outlines a
possible architecture of the learned optimizer, mainly high⁃
lighting the differences from the learned optimizer in the
single-node DBMS. In addition, this paper lists two major
challenges and discusses their possible solutions.

References
[1] MUKHERJEE N, CHAVAN S, COLGAN M, et al. Distributed architecture of

Oracle database in-memory [J]. Proceedings of the VLDB endowment, 2015, 8
(12): 1630–1641. DOI: 10.14778/2824032.2824061

[2] BLAKELEY J A, CUNNINGHAM C, ELLIS N, et al. Distributed/heterogeneous
query processing in Microsoft SQL server [C]//The 21st International Conference
on Data Engineering (ICDE’05). IEEE, 2005: 1001 – 1012. DOI: 10.1109/
ICDE.2005.51

[3] YANG Z K, YANG C H, HAN F S, et al. OceanBase [J]. Proceedings of the
VLDB endowment, 2022, 15(12): 3385 – 3397. DOI: 10.14778/
3554821.3554830

[4] CHANG L, WANG Z W, MA T, et al. HAWQ: a massively parallel processing
SQL engine in hadoop [C]//The 2014 ACM SIGMOD International Conference
on Management of Data. ACM, 2014: 1223 – 1234. DOI: 10.1145/
2588555.2595636

[5] IBARAKI T, KAMEDA T. On the optimal nesting order for computing N-
relational joins [J]. ACM transactions on database systems, 9(3): 482 – 502.
DOI: 10.1145/1270.1498

[6] RUPPRECHT L, CULHANE W, PIETZUCH P. SquirrelJoin: network-aware
distributed join processing with lazy partitioning [J]. Proceedings of the VLDB
endowment, 2017, 10(11): 1250–1261. DOI: 10.14778/3137628.3137636

[7] WANG G P. The optimization of query processing in Oceanbase 4.0. [EB/OL].
(2022-11-23) [2023-08-01]. https: //zhuanlan.zhihu.com/p/586113453

[8] MARCUS R, NEGI P, MAO H Z, et al. Neo: a learned query optimizer [J]. Pro⁃
ceedings of the VLDB endowment, 2019, 12(11): 1705–1718. DOI: 10.14778/
3342263.3342644

[9] YU X, LI G L, CHAI C L, et al. Reinforcement learning with tree-LSTM for join
order selection [C]//The 36th International Conference on Data Engineering

53

ZTE COMMUNICATIONS
June 2024 Vol. 22 No. 2

GAO Jun, HAN Yinjun, LIN Yang, MIAO Hao, XU Mo

Review Learned Distributed Query Optimizer: Architecture and Challenges

(ICDE). IEEE, 2020: 1297–1308. DOI: 10.1109/ICDE48307.2020.00116
[10] MARCUS R, NEGI P, MAO H Z, et al. BAO: making learned query optimiza⁃

tion practical [C]//The 2021 International Conference on Management of Data.
ACM, 2021: 1275–1288. DOI: 10.1145/3448016.3452838

[11] NEGI P, INTERLANDI M, MARCUS R, et al. Steering query optimizers:
a practical take on big data workloads [C]//The 2021 International Confer⁃
ence on Management of Data. ACM, 2021: 2557–2569. DOI: 10.1145/
3448016.3457568

[12] YANG Z H, CHIANG W L, LUAN S F, et al. Balsa: learning a query opti⁃
mizer without expert demonstrations [C]//The 2022 International Confer⁃
ence on Management of Data. ACM, 2022: 931 – 944. DOI: 10.1145/
3514221.3517885

[13] CHEN T Y, GAO J, CHEN H D, et al. LOGER: a learned optimizer to⁃
wards generating efficient and robust query execution plans [J]. Proceed⁃
ings of the VLDB endowment, 2023, 16(7): 1777–1789. DOI: 10.14778/
3587136.3587150

[14] DOSHI L, ZHUANG V, JAIN G, et al. Kepler: robust learning for faster
parametric query optimization [EB/OL]. [2023-08-01]. https://arxiv. org/
pdf/2306.06798v2

[15] WANG W, ZHANG M H, CHEN G, et al. Database meets deep learning [J].
ACM SIGMOD record, 2016, 45(2): 17–22. DOI: 10.1145/3003665.3003669

[16] ZHOU X H, CHAI C L, LI G L, et al. Database meets artificial intelli⁃
gence: a survey [J]. IEEE transactions on knowledge and data engineer⁃
ing, 2022, 34(3): 1096–1116. DOI: 10.1109/TKDE.2020.2994641

[17] LAN H, BAO Z F, PENG Y W. A survey on advancing the DBMS query
optimizer: cardinality estimation, cost model, and plan enumeration [J].
Data science and engineering, 2021, 6(1): 86 – 101. DOI: 10.1007/
s41019-020-00149-7

[18] CAI Q P, CUI C, XIONG Y Y, et al. A survey on deep reinforcement learning
for data processing and analytics [J]. IEEE transactions on knowledge and data
engineering, 2023, 35(5): 4446–4465. DOI: 10.1109/TKDE.2022.3155196

[19] ZHAO X Y, ZHOU X H, LI G L. Automatic database knob tuning: a sur⁃
vey [J]. IEEE transactions on knowledge and data engineering, 2023, 35
(12): 12470–12490. DOI: 10.1109/TKDE.2023.3266893

[20] GUO C X, CHEN H, ZHANG F, et al. Distributed join algorithms on multi-
CPU clusters with GPUDirect RDMA [C]//The 48th International Conference
on Parallel Processing. ACM, 2019: 1–10. DOI: 10.1145/3337821.3337862

[21] GAO H, SAKHARNYKH N. Scaling joins to a thousand GPUs. [EB/OL].
[2023-08-01]. https://adms-conf.org/2021-camera-ready/gao_presentation.pdf

[22] PAUL J, LU S L, HE B S, et al. MG-join: a scalable join for massively parallel
multi-GPU architectures [C]//International Conference on Management of Data.
ACM, 2021: 1413–1425. DOI: 10.1145/3448016.3457254

[23] YANG Z H, LIANG E, KAMSETTY A, et al. Deep unsupervised cardi⁃
nality estimation [EB/OL]. (2019-11-21) [2023-08-01]. http://arxiv. org/
abs/1905.04278

[24] HILPRECHT B, SCHMIDT A, KULESSA M, et al. DeepDB: learn from data,
not from queries! [EB/OL]. (2019-09-02) [2023-08-01]. http://arxiv. org/abs/
1909.00607

[25] WANG J Y, CHAI C L, LIU J B, et al. FACE [J]. Proceedings of the VLDB en⁃
dowment, 2021, 15(1): 72–84. DOI: 10.14778/3485450.3485458

[26] DUTT A, WANG C, NAZI A, et al. Selectivity estimation for range predi⁃
cates using lightweight models [J]. Proceedings of the VLDB endowment,
2019, 12(9): 1044–1057. DOI: 10.14778/3329772.3329780

[27] LI B B, LU Y, KANDULA S. Warper: efficiently adapting learned cardinality
estimators to data and workload drifts [C]//International Conference on Manage⁃
ment of Data. ACM, 2022: 1920–1933. DOI: 10.1145/3514221.3526179

[28] NEGI P, WU Z N, KIPF A, et al. Robust query driven cardinality estimation
under changing workloads [J]. Proceedings of the VLDB endowment, 2023, 16
(6): 1520–1533. DOI: 10.14778/3583140.3583164

[29] KANDULA S, ORR L, CHAUDHURI S. Pushing data-induced predicates
through joins in big-data clusters [J]. Proceedings of the VLDB endowment,
2019, 13(3): 252–265. DOI: 10.14778/3368289.3368292

[30] ZHAO Y, CONG G, SHI J C, et al. QueryFormer [J]. Proceedings of the VLDB

endowment, 2022, 15(8): 1658–1670. DOI: 10.14778/3529337.3529349
[31] ZHANG H, YU J X, ZHANG Y K, et al. Parallel query processing: To sepa⁃

rate communication from computation [C]//International Conference on Man⁃
agement of Data. ACM, 2022: 1447–1461. DOI: 10.1145/3514221.3526164

[32] POLYCHRONIOU O, SEN R, ROSS K A. Track join: distributed joins
with minimal network traffic [C]//SIGMOD International Conference on
Management of Data. ACM, 2014: 1483–1494

[33] STAMOS J W, YOUNG H C. A symmetric fragment and replicate algo⁃
rithm for distributed joins [J]. IEEE transactions on parallel and distrib⁃
uted systems, 1993, 4(12): 1345–1354. DOI: 10.1109/71.250116

[34] YANG Y, YOUILL M, WOICIK M, et al. FlexPushdownDB: hybrid push⁃
down and caching in a cloud DBMS [J]. Proceedings of the VLDB Endow⁃
ment, 2021, 14(11): 2101–2113

[35] ROY D, PANDA P, ROY K. Tree-CNN: a hierarchical deep convolu⁃
tional neural network for incremental learning [EB/OL]. (2019-09-18)
[2023-08-01]. http://arxiv.org/abs/1802.05800

[36] TAI K S, SOCHER R, MANNING C D. Improved semantic representa⁃
tions from tree-structured long short-term memory networks [EB/OL].
(2015-05-30) [2023-08-01]. http://arxiv.org/abs/1503.00075

[37] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need
[C]//The 31st International Conference on Neural Information Processing
Systems. ACM, 2017: 6000–6010. DOI: 10.5555/3295222.3295349

[38] YANG Z K, YANG C H, HAN F S, et al. OceanBase: a 707 million tpmC
distributed relational database system [J]. Proceedings of the VLDB en⁃
dowment, 2022, 15(12): 3385–3397. DOI: 10.14778/3554821.3554830

[39] SIDDIQUI T, JINDAL A, QIAO S, et al. Cost models for big data query
processing: Learning, retrofitting, and our findings [EB/OL]. (2020-02-
07) [2023-08-01]. http://arxiv.org/abs/2002.12393

[40] MARCUS R, PAPAEMMANOUIL O. Plan-structured deep neural net⁃
work models for query performance prediction [EB/OL]. (2019-01-31)
[2023-08-01]. http://arxiv.org/abs/1902.00132

[41] WANG J C, DING D, WANG H, et al. Polyjuice: high-performance trans⁃
actions via learned concurrency control [EB/OL]. (2021-06-15) [2023-08-
01]. http://arxiv.org/abs/2105.10329

Biographies
GAO Jun (gaojun@pku.edu.cn) received his BE and ME degrees in computer
science from Shandong University, China in 1997 and 2000, and his PhD de⁃
gree in computer science from Peking University, China in 2003. Currently he
is a professor with the School of Computer Science, Peking University. His ma⁃
jor research interests include web data management, graph data management
and AI+DB.

HAN Yinjun is a senior engineer with ZTE Corporation. He has published mul⁃
tiple papers, obtained more than ten authorized patents, won multiple provincial
and ministerial awards, and is a senior member of CCF. His main research inter⁃
ests include database systems and storage systems.

LIN Yang is a research and development engineer of ZTE Corporation. She re⁃
ceived her master degree from Nanjing University of Science and Technology, Chi⁃
na in 2017. Her research interests include query optimization, AI4DB and DB4AI.

MIAO Hao s a postgraduate student in the School of Computer Science, Pe⁃
king University, China. His major research interests include graph neural net⁃
work and AI+DB.

XU Mo is a research and development engineer of ZTE Corporation. He re⁃
ceived his master degree from Monash University, Australia. His research inter⁃
ests include query optimization, AI4DB and database kernel development.

54

